Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abdulmalik Oyedeji"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    An Order (K+5) Block Hybrid Backward Differentiation Formula for Solution of Fourth Order Ordinary Differential Equations
    (Çankaya University Journal of Science and Engineering, 2024) Raihanatu Muhammad; Hajara Hussaini; Abdulmalik Oyedeji
    This paper covers the derivation and implementation of the 4-step linear Multistep method of Block Hybrid Backward Differentiation Formula (BHBDF) for solving fourth-order initial value problems in ordinary differential equations. In the derivation of the proposed numerical method, the utilization of collocation and interpolation points was adopted with Legendre polynomials serving as the fundamental basis function. The 4-step BHBDF developed to solve fourth-order IVPs has a higher order of accuracy (p=9). Furthermore, the proposed numerical block methods are employed directly to solve fourth-order ODEs. In comparison to some existing methods examined in the prior studies, the proposed method has a robust implementation strategy and demonstrate a higher level of accuracy.
  • No Thumbnail Available
    Item
    The Algebraic Structure of an Implicit Runge- Kutta Type Method
    (International Journal for Research in Applied Science & Engineering Technology (IJRASET), 2024-11) Raihanatu Muhammad; Abdulmalik Oyedeji
    In this paper, the theory of linear transformation (Homomorphism) and monomorphism is applied to a first-order Runge-Kutta Type Method illustrated in a Butcher Table and the extended second order Runge- Runge-Kutta type Method to substantiate their uniform order and error constants obtained. A homomorphism is a mapping from one group to another group which preserves the group operations. It’s sometimes called the operation preserving function. The methods which initially are Linear Multistep were reformulated into Runge-Kutta (R-K) Type to establish the advantages the R-K has over Linear Multistep. The first-order Linear multistep was reformulated into first-order R-K type which was further extended to second order. This extension can be made to higher order. For this study, the extension was limited to the second order.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify